<u>Chapter one</u> Functions

Real Numbers:

- $\mathbb{N} = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, ...\}$ Natural Numbers.
- $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Integer Numbers.
- $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$ Rational Numbers.
- $\mathbb{IQ} = \pi, e, \sqrt{2}, \sqrt{3}, \sqrt{5}, \dots$ Irrational Numbers. $\mathbb{R} = \mathbb{Q} \cup \mathbb{IQ}$

Definition (1.1): If **a** and **b** are real numbers, we define the Intervals as follows:

- (1) Open Intervals $(a,b) = \{x \in \mathbb{R} : a < x < b\}$
- (2) Closed Intervals $[a,b] = \{x \in R : a \le x \le b\}$
- (3) Half open, half closed Intervals $[a,b] = \{x \in R : a \le x < b\}$ and $(a,b] = \{x \in R : a < x \le b\}.$

$$(4) \quad [a,\infty) = \{x \in R : x \ge a\}, \ (-\infty, a] = \{x \in R : x \le a\}, \ (-\infty, a) = \{x \in R : x < a\}$$

and
$$(-\infty,\infty) = \{x \in \mathbb{R} : x \text{ is a real number}\} = \mathbb{R}.$$

<u>Remark</u>: If *A* and *B* are intervals, then

- 1. The union of A and B is denoted by $A \cup B$ and defined as the interval whose members belong to A or B (or both).
- 2. The intersection of A and B is denoted by $A \cap B$ and defined as the interval whose members belong to both A and B.

Example: Let A = [0,5] and B = [1,7] then $A \cup B = [0,7]$ and $A \cap B = [1,5]$.

Functions

Definition 1: A relation $f: X \to Y$ is called a function if and only if for each element $x \in X$ there exist a unique element $y \in Y$ such that y = f(x).

Note:

- (1) x is the independent variable (input value of f) and y is dependent variable (output value of f at x)
- (2) The set X of all possible input values is called the domain of f and it's denoted by D_f
- (3) The set *Y* is called the co-domain of the function.
- (4) The set of all possible output values f(x) as x varies throughout D_x is called the range of f and it's denoted by R_f . (Note that $R_f \subseteq Y$.)

Examples: Find the Domain and the Range of the following:

$$(1) \quad y = x + 5$$

$$D_f = \{x \in R : -\infty < x < \infty\} = R$$

To find the Range, we represent x in terms of y. x = y - 5 $R_f = \{y \in R : -\infty < y < \infty\} = R$

(2)
$$y = x^2$$
 $D_f = \{x \in R : -\infty < x < \infty\} = R$

$$\mathbf{x} = \sqrt{\mathbf{y}} \implies R_f = \{ y \in R : y \ge 0 \} = [0, \infty)$$

(3) $y = \frac{1}{x+2}$ (set the denominator = 0)

$$x + 2 = 0, \quad x = -2$$

$$x = \frac{1 - 2y}{y}$$

$$\Rightarrow D_f = \{x \in \Re : x \neq -2\} = \Re/\{-2, 2\}$$

$$x = \frac{1 - 2y}{y}$$

$$\Rightarrow R_f = \{y \in \Re : y \neq 0\} = \Re/\{0\}$$

$$x = \sqrt{x + 9}$$

$$x \in [0,7]$$

$$\Rightarrow D_f = [0,7]$$

Put x = 0 in the function we get y = 3Put x = 7 in the function we get y = 4 then $R_f = [3,4]$

(5)
$$f(x) = \frac{1}{\sqrt{2-x}} + 5$$
 (6) $y = \frac{3x}{x^2 - 5x + 6}$

}

Definition: Let f(x) be a function with domain D_f . The set of all points (x, y) in the plane with x in D_f and y = f(x) is called the graph of f(x).

 $\{(x, f(x)): x \in D_f\}$

] /		
x			
f(x)			
(x,f(x))			

Algebraic Combination of Function

If f and g are two functions with domains D_f and D_g respectively, then

- (1) (f+g)(x) = f(x) + g(x) with $D_{f+g} = D_f \cap D_g$
- (2) (f-g)(x) = f(x) g(x) with $D_{f-g} = D_f \cap D_g$
- (3) $(f.g)(x) = f(x) \cdot g(x)$ with $D_{f.g} = D_f \cap D_g$
- (4) $\left(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0 \text{ with } D_{f/g} = D_f \cap D_g \text{ and } g(x) \neq 0$

Examples: 1) If $f(x) = x^2 - 5x - 6$ and $g(x) = 3x^2 + 4$ then find (f + g)(x), $(f - g)(x), (g - f)(x), (f \cdot g)(x), (f/g)(x)$ and (g/f)(x). Moreover, find their domains.

	- j , - g	
Function	Formula	Domain
f + g	$(f+g)(x) = 4x^2 - 5x - 2$	\mathbb{R}
f - g	$(f-g)(x) = -2x^2 - 5x - 10$	\mathbb{R}
g-f	$(g-f)(x) = 2x^2 + 5x + 10$	\mathbb{R}
<i>f</i> . <i>g</i>	$(f.g)(x) = 3x^4 - 15x^3 - 14x^2 - 20x - 24$	\mathbb{R}
f/g	(f) $x^2 - 5x - 6$	\mathbb{R}
	$\left(\frac{x}{g}\right)(x) = \frac{1}{3x^2 + 4}$	
g/f	$\binom{g}{(x)} = \frac{3x^2 + 4}{x^2 + 4}$	$(-\infty, -1) \cup (-1, 6) \cup (6, \infty)$
	$\left(\frac{3}{f}\right)(x) = \frac{1}{x^2 - 5x - 6}$	

Solution: $D_f = \mathbb{R}$, $D_a = \mathbb{R}$

2) If $f(x) = \sqrt{x}$ and $gx) = \sqrt{1-x}$ then find (f+g)(x), (f-g)(x), (g-f)(x), (f,g)(x), (f/g)(x) and (g/f)(x). Moreover, find their domains.

<u>Solution</u>: $D_f = \{x \in \mathbb{R} : x \ge 0\} = \mathbb{R}^+ \cup \{0\} = [0, \infty), D_g = \{x \in \mathbb{R} : x \le 1\} = (-\infty, 1]$ Formula Function Domain [0,1] f + g $(f+g)(x) = \sqrt{x} + \sqrt{1-x}$ $\frac{(f-g)(x) = \sqrt{x} - \sqrt{1-x}}{(g-f)(x) = \sqrt{1-x} - \sqrt{x}}$ f - g[0,1][0,1]g-f $(f.g)(x) = \sqrt{x(1-x)}$ [0,1]f.g f/g \sqrt{x} [0,1)(x) = - $\frac{1}{1-x}$ g/f(0,1] $\left(\frac{g}{f}\right)(x) = \frac{\sqrt{1-x}}{\sqrt{x}} = \frac{1}{\sqrt{x}}$ x

3) If f(x) = 2 and $gx) = x^2$ then find (f + g)(x), (f - g)(x), (g - f)(x), $(f \cdot g)(x)$, (f/g)(x) and (g/f)(x). Moreover, find their domains and ranges.

<u>Solution</u> : $D_f = \mathbb{R}, \ D_g = \mathbb{R}$					
Function	Formula	Domain	Rang		
f + g	$(f+g)(x) = 2 + x^2$	\mathbb{R}	[2,∞)		
f - g	$(f-g)(x) = 2 - x^2$	$\mathbb R$	[−∞,2)		
g-f	$(g-f)(x) = x^2 - 2$	$\mathbb R$	[−2,∞)		
f.g	$(f.g)(x) = 2x^2$	$\mathbb R$	[0,∞)		
f/g	$\left(\frac{f}{g}\right)(x) = \frac{2}{x^2}$	$(-\infty,0) \cup (0,\infty)$	(0,∞)		
g/f	$\left(\frac{g}{f}\right)(x) = \frac{x^2}{2}$	R	(0,∞)		

MATH 101 Chapter One – Functions

Shifting a Graph of a function: 1. Vertical Shifts:

 $y = f(x) + k \implies \text{Shifts the graph of } f \begin{cases} up \ k \ units \ if \ k > 0 \\ down \ |k| \ units \ if \ k < 0 \end{cases}$

2. Horizontal Shifts:

 $y = f(x + h) \Rightarrow \text{Shifts the graph of } \begin{cases} \text{left } h \text{ units if } h > 0\\ \text{right } |h| \text{ units if } h < 0 \end{cases}$

Scaling and Reflecting a Graph of a Function:

For c > 1, the graph is scaled as:

y = cf(x) Stretches the graph of *f* vertically by a factor of *c*. $y = \frac{1}{c}f(x)$ Compresses the graph of *f* vertically by a factor of *c*. y = f(cx) Compresses the graph of *f* horizontally by a factor of *c*. $y = f(\frac{1}{c}x)$ Stretches the graph of *f* horizontally by a factor of *c*.

For c = -1, the graph is reflected as:

y = -f(x) Reflects the graph f across the x - axisy = f(-x) Reflects the graph f across the y - axis **Example:** Consider the function $y = \sqrt{x}$

Composite Function

If the range of the function g(x) is contained in the domain of the function f(x), then the composition $f \circ g$ is the function defined by $(f \circ g)(x) = f(g(x))$. The domain of $f \circ g$ consists of the number x in the domain of g for which g(x) lies in

the domain of f.

$$x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))$$

Department of Mathematics - College of Education for Pure Sciences - University of Basrah Telegram: @uobmath <u>t.me\uobmath</u>

Examples:

1) If $f(x) = \sqrt{x}$ and g(x) = x + 1, then find (a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$

Solution: $D_f = [0, \infty), D_g = \mathbb{R}$	
Composite	Domain
(a) $(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$	[−1,∞)
(b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$	[0 ,∞)
(c) $(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{\frac{1}{4}}$	[0 ,∞)
(d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2$	\mathbb{R}

2) If
$$f(x) = x^2 - 3$$
 and $g(x) = x + 1$, then find
(a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$

Solution: $D_f = \mathbb{R}, D_g = \mathbb{R}$

Composite	Domain
(a) $(f \circ g)(x) = f(g(x)) = (g(x))^2 - 3 = x^2 + 2x - 2$	\mathbb{R}
(b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = x^2 - 2$	\mathbb{R}
$(c) (f \circ f)(x) = f(f(x)) = (f(x))^2 - 3 = (x^2 - 3)^2 - 3 = x^4 - 6x^2 + 6$	\mathbb{R}
(d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2$	\mathbb{R}

The Inverse of the functions:

<u>Definition</u>: A function is said to be one - to - one function if and only if there is no two elements of the domain have the same image in the range.

Horizontal Line Test: A function is one-to-one if and only if there is no horizontal line can intersect its graph more than once.

Department of Mathematics - College of Education for Pure Sciences - University of Basrah Telegram: @uobmath <u>t.me\uobmath</u>

Definition: Let f be a one-to-one function with domain A and B (biective function). Then its inverse function f^{-1} has domain B and range A and is defined by $f^{-1}(y) = x \Leftrightarrow f(x) = y, \forall y \in B \text{ or } f^{-1}(f(x)) = f(f^{-1}(x)) = x \text{ and } D_{f^{-1}} = R_f,$ $D_f = R_{f^{-1}}.$

How to find the inverse function of a one-to-one function f

Step 1: Write y = f(x).

Step 2: Solve this equation for x in terms of y (if possible). **Step 3:** To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Example: Find the inverse of f for $f(x) = x^3 + 2$ **Solution:** According to the above algorithm, we first write $y = x^3 + 2$, then we solve this equation for x: $x^3 = y - 2 \Longrightarrow x = \sqrt[3]{y-2}$

Finally, we iterchange x and y:

 $y = \sqrt[3]{x-2}$ $\therefore f^{-1}(x) = \sqrt[3]{x-2}$

 $(x) = \sqrt{x}$

Department of Mathematics - College of Education for Pure Sciences - University of Basrah Telegram: @uobmath <u>t.me\uobmath</u>

<u>CAUTION</u> The -1 in f^{-1} is not a power number. Thus $f^{-1}(x)$ dose not mean $\frac{1}{f(x)}$.