Chapter one

Functions

Real Numbers:

$\mathbb{N}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\}$ Natural Numbers.
$\mathbb{Z}=\{\ldots,-\mathbf{3}, \mathbf{- 2}, \mathbf{- 1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\}$ Integer Numbers.
$\mathbb{Q}=\left\{\frac{\boldsymbol{a}}{\boldsymbol{b}}: \boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}, \boldsymbol{b} \neq \mathbf{0}\right\}$ Rational Numbers.
$\mathbb{I} \mathbb{Q}=\pi, e, \sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots \quad$ Irrational Numbers.
$\mathbb{R}=\mathbb{Q} \cup \mathbb{I} \mathbb{Q}$
Definition (1.1): If \boldsymbol{a} and b are real numbers, we define the Intervals as follows:
(1) Open Intervals

$$
(a, b)=\{x \in R: a<x<b\}
$$

(2) Closed Intervals

$$
[a, b]=\{x \in R: a \leq x \leq b\}
$$

(3) Half open, half closed Intervals $[\boldsymbol{a}, \boldsymbol{b})=\{x \in \boldsymbol{R}: a \leq x<b\}$ and $(a, b]=\{x \in R: a<x \leq b\}$.
(4) $[a, \infty)=\{x \in R: x \geq a\},(-\infty, a]=\{x \in R: x \leq a\},(-\infty, a)=\{x \in R: x<a\}$ and $(-\infty, \infty)=\{\boldsymbol{x} \in \boldsymbol{R}: \boldsymbol{x}$ is a real number $\}=\boldsymbol{R}$.

Remark: If A and B are intervals, then

1. The union of A and B is denoted by $A \cup B$ and defined as the interval whose members belong to A or B (or both).
2. The intersection of A and B is denoted by $A \cap B$ and defined as the interval whose members belong to both A and B.
Example: Let $A=[0,5]$ and $B=[1,7]$ then $A \cup B=[0,7]$ and $A \cap B=[1,5]$.

Functions

Definition 1: A relation $f: X \rightarrow Y$ is called a function if and only if for each element $x \in X$ there exist a unique element $y \in Y$ such that $y=f(x)$.

Note:

(1) x is the independent variable (input value of f) and y is dependent variable (output value of f at x)
(2) The set X of all possible input values is called the domain of f and it's denoted by D_{f}
(3) The set Y is called the co-domain of the function.
(4) The set of all possible output values $f(x)$ as x varies throughout D_{x} is called the range of f and it's denoted by R_{f}. (Note that $R_{f} \subseteq Y$.)

Examples: Find the Domain and the Range of the following:

(1) $y=x+5$
$D_{f}=\{x \in R:-\infty<x<\infty\}=R$
To find the Range, we represent \boldsymbol{x} in terms of $\boldsymbol{y} . \quad \boldsymbol{x}=\boldsymbol{y}-\mathbf{5}$

$$
R_{f}=\{y \in R:-\infty<y<\infty\}=R
$$

(2)

$$
\begin{array}{ll}
\boldsymbol{y}=\boldsymbol{x}^{2} & D_{f}=\{x \in R:-\infty<x<\infty\}=R \\
\boldsymbol{x}=\sqrt{\boldsymbol{y}} & \Rightarrow R_{f}=\{y \in R: y \geq 0\}=[0, \infty)
\end{array}
$$

$$
\begin{equation*}
y=\frac{1}{x+2} \quad(\text { set the denominator }=0) \tag{3}
\end{equation*}
$$

$$
x+2=0, \quad x=-2
$$

$$
\Rightarrow D_{f}=\{x \in \mathfrak{R}: x \neq-2\}=\mathfrak{R} /\{-2\}
$$

$$
\begin{array}{r}
\boldsymbol{x}=\frac{\boldsymbol{1 - 2 \boldsymbol { y }}}{\boldsymbol{y}} \Rightarrow D_{f}=\{x \in \mathfrak{R}: x \neq-2\}= \\
\Rightarrow R_{f}=\{y \in \mathfrak{R}: y \neq 0\}=\mathfrak{R} /\{0\}
\end{array}
$$

(4) $y=\sqrt{x+9} \quad x \in[0,7] \quad \Rightarrow D_{f}=[0,7]$

Put $\boldsymbol{x}=\boldsymbol{0}$ in the function we get $\boldsymbol{y}=\mathbf{3}$
Put $\boldsymbol{x}=7$ in the function we get $\boldsymbol{y}=\boldsymbol{4}$ then $R_{f}=[3,4]$
(5) $f(x)=\frac{1}{\sqrt{2-x}}+5$
(6) $y=\frac{3 x}{x^{2}-5 x+6}$

Definition: Let $f(x)$ be a function with domain D_{f}. The set of all points (x, y) in the plane with x in D_{f} and $y=f(x)$ is called the graph of $f(x)$.
$\left\{(x, f(x)): x \in D_{f}\right\}$

x				
$f(x)$				
$(x, f(x))$				

Algebraic Combination of Function

If f and g are two functions with domains D_{f} and D_{g} respectively, then
(1) $(f+g)(x)=f(x)+g(x)$ with $D_{f+g}=D_{f} \cap D_{g}$
(2) $(f-g)(x)=f(x)-g(x)$ with $D_{f-g}=D_{f} \cap D_{g}$
(3) $(f . g)(x)=f(x) . g(x) \quad$ with $D_{f . g}=D_{f} \cap D_{g}$
(4) $\left(\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0\right.$ with $D_{f / g}=D_{f} \cap D_{g}$ and $g(x) \neq 0$

Examples: 1)If $f(x)=x^{2}-5 x-6$ and $g(x)=3 x^{2}+4$ then find $(f+g)(x)$, $(f-g)(x),(g-f)(x),(f \cdot g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains.

Solution: $D_{f}=\mathbb{R}, D_{g}=\mathbb{R}$

Function	Formula	Domain
$f+g$	$(f+g)(x)=4 x^{2}-5 x-2$	\mathbb{R}
$f-g$	$(f-g)(x)=-2 x^{2}-5 x-10$	\mathbb{R}
$g-f$	$(g-f)(x)=2 x^{2}+5 x+10$	\mathbb{R}
$f \cdot g$	$(f \cdot g)(x)=3 x^{4}-15 x^{3}-14 x^{2}-20 x-24$	\mathbb{R}
f / g	$\left(\frac{f}{g}\right)(x)=\frac{x^{2}-5 x-6}{3 x^{2}+4}$	\mathbb{R}
	g / f	$\left(\frac{g}{f}\right)(x)=\frac{3 x^{2}+4}{x^{2}-5 x-6}$

Abdulnabi H. Ali
Ansam Alsabti Ali Hasan Ali
2) If $f(x)=\sqrt{x}$ and $g x)=\sqrt{1-x}$ then find $(f+g)(x),(f-g)(x),(g-f)(x)$, $(f . g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains.

Solution: $D_{f}=\{x \in \mathbb{R}: x \geq 0\}=\mathbb{R}^{+} \cup\{0\}=[0, \infty), D_{g}=\{x \in \mathbb{R}: x \leq 1\}=(-\infty, 1]$

Function	Formula	Domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f . g$	$(f . g)(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x}}{\sqrt{1-x}}=\sqrt{\frac{x}{1-x}}$	$[0,1)$
g / f	$\left(\frac{g}{f}\right)(x)=\frac{\sqrt{1-x}}{\sqrt{x}}=\sqrt{\frac{1-x}{x}}$	$(0,1]$

3) If $f(x)=2$ and $g x)=x^{2}$ then find $(f+g)(x),(f-g)(x),(g-f)(x)$, $(f . g)(x),(f / g)(x)$ and $(g / f)(x)$. Moreover, find their domains and ranges.

Solution: $D_{f}=\mathbb{R}, \quad D_{g}=\mathbb{R}$

Function	Formula	Domain	Rang
$f+g$	$(f+g)(x)=2+x^{2}$	\mathbb{R}	$[2, \infty)$
$f-g$	$(f-g)(x)=2-x^{2}$	\mathbb{R}	$[-\infty, 2)$
$g-f$	$(g-f)(x)=x^{2}-2$	\mathbb{R}	$[-2, \infty)$
$f . g$	$(f \cdot g)(x)=2 x^{2}$	\mathbb{R}	$[0, \infty)$
f / g	$\left(\frac{f}{g}\right)(x)=\frac{2}{x^{2}}$	$(-\infty, 0) \cup(0, \infty)$	$(0, \infty)$
g / f	$\left(\frac{g}{f}\right)(x)=\frac{x^{2}}{2}$	\mathbb{R}	$(0, \infty)$

Shifting a Graph of a function:

1. Vertical Shifts:

$y=f(x)+k \Rightarrow$ Shifts the graph of $f\left\{\begin{array}{l}\text { up } k \text { units if } k>0 \\ \text { down }|k| \text { units if } k<0\end{array}\right.$

2. Horizontal Shifts:

$y=f(x+h) \Rightarrow$ Shifts the graph of $f\left\{\begin{array}{l}\text { left } h \text { units if } h>0 \\ \text { right }|h| \text { units if } h<0\end{array}\right.$

Scaling and Reflecting a Graph of a Function:

For $c>1$, the graph is scaled as:
$y=c f(x)$ Stretches the graph of f vertically by a factor of c.
$y=\frac{1}{c} f(x)$ Compresses the graph of f vertically by a factor of c.
$y=f(c x)$ Compresses the graph of f horizontally by a factor of c.
$y=f\left(\frac{1}{c} x\right)$ Stretches the graph of f horizontally by a factor of c.
For $c=-1$, the graph is reflected as:
$y=-f(x) \quad$ Reflects the graph f across the x-axis
$y=f(-x) \quad$ Reflects the graph f across the $y-$ axis

Example: Consider the function $y=\sqrt{x}$

Composite Function

If the range of the function $g(x)$ is contained in the domain of the function $f(x)$, then the composition $f \circ g$ is the function defined by $(f \circ g)(x)=f(g(x))$.
The domain of $f \circ g$ consists of the number x in the domain of g for which $g(x)$ lies in the domain of f.

$$
x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))
$$

Examples:

1) If $f(x)=\sqrt{x}$ and $g(x)=x+1$, then find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

Solution: $D_{f}=[0, \infty), \quad D_{g}=\mathbb{R}$

Composite	Domain
(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$	$[-\mathbf{1}, \infty)$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$	$[\mathbf{0}, \infty)$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{\frac{1}{4}}$	$[\mathbf{0}, \infty)$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$	\mathbb{R}

2) If $f(x)=x^{2}-3$ and $g(x)=x+1$, then find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

Solution: $D_{f}=\mathbb{R}, D_{g}=\mathbb{R}$

Composite	Domain
(a) $(f \circ g)(x)=f(g(x))=(g(x))^{2}-3=x^{2}+2 x-2$	\mathbb{R}
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=x^{2}-2$	\mathbb{R}
(c) $(f \circ f)(x)=f(f(x))=(f(x))^{2}-3=\left(x^{2}-3\right)^{2}-3=x^{4}-6 x^{2}+6$	\mathbb{R}
(d) $(g \circ g)(x)=g(g(x))=g(x)+1=(x+1)+1=x+2$	\mathbb{R}

The Inverse of the functions:

Definition : A function is said to be one - to - one function if and only if there is no two elements of the domain have the same image in the range.
i.e. if $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \quad$ or if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Horizontal Line Test: A function is one-to-one if and only if there is no horizontal line can intersect its graph more than once.

MATH 101
Chapter One - Functions

Abdulnabi H. Ali
Ansam Alsabti
Ali Hasan Ali

Definition: Let f be a one-to-one function with domain A and B (biective function).
Then its inverse function f^{-1} has domain B and range A and is defined by
$f^{-1}(y)=x \Leftrightarrow f(x)=y, \forall y \in B$ or $f^{-1}(f(x))=f\left(f^{-1}(x)\right)=x$ and $D_{f^{-1}}=R_{f}$, $D_{f}=R_{f^{-1}}$.

How to find the inverse function of a one-to-one function \boldsymbol{f}

Step 1: Write $y=f(x)$.
Step 2: Solve this equation for x in terms of y (if possible).
Step 3: To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y=f^{-1}(x)$.

Example: Find the inverse of f for $f(x)=x^{3}+2$
Solution: According to the above algorithm, we first write
$y=x^{3}+2$, then we solve this equation for x :
$x^{3}=y-2 \Rightarrow x=\sqrt[3]{y-2}$
Finally, we iterchange x and y :
$y=\sqrt[3]{x-2}$
$\therefore f^{-1}(x)=\sqrt[3]{x-2}$
The graph of f^{-1} is obtained by reflecting the graph of f around the line $y=x$.

